This sample provided by Writers Per Hour.

Paper writing service. Our team comprises reliable writers to provide you with
high-quality custom papers 24/7.
>> Writersperhour.com <

Dataset Statistical Analysis and Interpretation

Student's First and Last Name
Institutional Affiliation
Course Code: Course Name

Instructor Name

Due Date

1. Introduction

Market segment analysis is one of the critical step when assessing a new market for different products. However, to understand the economic growth and potential of a market segment requires decision making from existing data to understand potential customers' preferences and purchasing power. Through relevant data, a company can assess the internal and external factors which are critical for the success and growth of the business. This report is based on online survey about potential customer in Phoenix market as the company seeks to expand its tablet business into the area. The report highlights findings from data analysis to provide important information about the potential customers and how the company can leverage on some of the information to satisfy its customers.

Four statistical analysis procedures were used to extract useful information from the data set. First descriptive statistics were generated to understand the structure of the data and find important information to apply in inferential tests. The second test was independent sample t test and one way ANOVA to compare means among different variables in order to understand how different independent variables (IVs) affected different dependent variables (DVs). The third set of test was bivariate correlation which involved testing the trends and relationships among different variables to understand how such relationships can inform critical decision making when creating product lines for the Phoenix market customers. The last set of statistical test was linear regression which provided the association between DV and one or more IVs to help the business understand the effect of different variables of specific dependent variables of interest.

The company will be able to build their decision based on the findings of this report to appropriately serve the customers in Phoenix area by understanding their customers better.

1. Descriptive statistics

The following variables were selected for this analysis.

VARIABLES:

income, sex, internet hours, petowner, weable, political, homo marry, religious, facebook, nextgen, companies, banks, science tech, USETECH, issues, degree, tvhours, careself, age, emailhrs, CINTV.

There were a total of 500 respondents. 499 provided their age where the mean age for the sample population was 52.27 , median of 50.00 , and mode 42.0 . The maximum and minimum age among the respondents was 102 and 9 respectively. Out of the 500 respondents, 274 were female while 226 were female representing 54.8% and 45.2% respectively. The maximum and minimum income was 383 and 250000 dollars respectively with min home income of 60752.71.

			Cumulative Percent		
Valid	FEMAL	274	54.8	54.8	54.8
	E				
	MALE	226	45.2	45.2	100.0
	500	100.0	100.0		

Most of the respondents 40% were moderately religious followed by those without religious affiliation at 24.3%. Table 2 shows the frequency of religious affiliation.

R CONSIDER SELF A RELIGIOUS PERSON					
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	VERY RELIGIOUS	71	14.2	14.3	14.3
	MODRTE RELIGIOUS	199	39.8	40.0	54.3
	SLIGHT RELIGIOUS	106	21.2	21.3	75.7
	NOT RELIGIOUS	121	24.2	24.3	100.0
Missing	Total	497	99.4	100.0	
DONT KNOW	2	.4			
Total	NA	1	.2		

A larger number of respondents were affiliated with Democratic and independent party, 40.9\% and 40.2% respectively. Table 3 shows political affiliations.

POLITICAL PARTY AFFILIATION

			Cumulative Percent		
Valid	Democrat	203	40.6	40.9	40.9

	Independent	201	40.2	40.5	81.5
	Republican	80	16.0	16.1	97.6
	Other party	12	2.4	2.4	100.0
Total	496	99.2	100.0		
Missing	NA	4	.8		
Total	500	100.0			

Table 4 shows percentage of highest degree each respondent had. Most respondents (55.1\%) were bachelors degree holders.

THE HIGHEST DEGREE R HAVE EARNED

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	ASSOCIATE'S	16	3.2	13.6	13.6
	BACHELOR'S	65	13.0	55.1	68.6
	MASTER'S	27	5.4	22.9	91.5
	MBA	2	. 4	1.7	93.2
	LAW	2	. 4	1.7	94.9
	PHD	4	. 8	3.4	98.3
	MD	2	. 4	1.7	100.0
	Total	118	23.6	100.0	
Missing	IAP	382	76.4		
Total		500	100.0		

A larger number of respondents agreed (61.4\%) that science and technology was necessary and should be supported by federal government.

SCI RSCH IS NECESSARY AND SHOULD BE SUPPORTED BY FEDERAL GOVT

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Strongly agree	69	13.8	27.7	27.7
	Agree	153	30.6	61.4	89.2
	Disagree	19	3.8	7.6	96.8
	Strongly disagree	8	1.6	3.2	100.0
	Total	249	49.8	100.0	
Missing	IAP	239	47.8		
	DONT KNOW	10	2.0		
	NO ANSWER	2	. 4		
	Total	251	50.2		
Total		500	100.0		

There was mixed attitude among respondent regarding self care among individuals in need.
those in need have to take care of themselves

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Strongly Agree	8	1.6	2.4	2.4
	Agree	68	13.6	20.4	22.8
	Neither Agree nor Disagree	82	16.4	24.6	47.4
	Disagree	131	26.2	39.3	86.8
	Strongly Disagree	44	8.8	13.2	100.0
	Total	333	66.6	100.0	
Missing	IAP	164	32.8		
	DONT KNOW	2	. 4		
	NO ANSWER	1	. 2		
	Total	167	33.4		
Total		500	100.0		

More than half of the respondents 51.5% had confidence in banks and financial institutions.

> CONFID IN BANKS \& FINANCIAL INSTITUTIONS

				Cumulative Percent	
Valid	A GREAT DEAL	35	7.0	10.2	10.2
	ONLY SOME	176	35.2	51.5	61.7
	HARDLY ANY	131	26.2	38.3	100.0
Motal	342	68.4	100.0		
Missing	IAP	155	31.0		
	DK	3	.6		
Total	Total	158	31.6		

There was a small number of respondents who had confidence in television with most having no confidence in television.

Confidence in television

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	A GREAT DEAL	80	16.0	16.2	16.2
	ONLY SOME	177	35.4	35.8	51.9
	HARDLY ANY	238	47.6	48.1	100.0
	Total	495	99.0	100.0	
Missing	DK	4	. 8		
	NA	1	. 2		
	Total	5	1.0		
Total		500	100.0		

Most of the respondents 35.6% spend more than 3 hour watching TV per day. With only a few spending less than 6 hours watching TV per day. The mean hours per day watching TV among the respondents was 3.32 and the mode was 2.87 . The mean email hours per week among the respondents was 3 hours, the mode was 4 , and median was 6.33 hours. The mean of hours spend on internet was 14.37 hours and mode of 18.0 hours. Mean percentage of time respondents used technology was 51.66% technology with most spending 50% of their time with technology. Most of the respondents had excellent and good ability to use the internet with only less than 100 having poor to very poor ability of using internet.

R's ability to use internet

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Excellent	125	25.0	25.0	25.0
	Good	171	34.2	34.2	59.2
	Fair	115	23.0	23.0	82.2
	Poor	59	11.8	11.8	94.0
	Very poor	30	6.0	6.0	100.0
	Total	500	100.0	100.0	

More than 70% of the respondents had and understanding of the issues facing the country while only 2.5% of the sample population did not understand issues facing the country.

UNDERSTAND ISSUES FACING COUNTRY					
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	None	4	. 8	2.5	2.5
	A little	33	6.6	20.6	23.1
	Some	69	13.8	43.1	66.3
	Quite a bit	42	8.4	26.3	92.5

	A great deal	12	2.4	7.5	100.0
	Total	160	32.0	100.0	
Missing	IAP	333	66.6		
	DON'T KNOW	5	1.0		
No answer	2	.4			
Total	340	68.0			
Total		500	100.0		

More than 89% of the sample population disagreed with the fact that science and technology gives more opportunities to the next generation.

SCIENCE \& TECH. GIVE MORE OPPORTUNITIES TO NEXT GENERATION

				Cumulative Percent	
Valid	Strongly agree	5	1.0	2.0	2.0
	Agree	21	4.2	8.5	10.5
	Disagree	144	28.8	58.3	68.8
	Strongly disagree	77	15.4	31.2	100.0
	Total	247	49.4	100.0	
Missing	IAP	240	48.0		
	DONT KNOW	12	2.4		
	NO ANSWER	1	.2		
Total	253	50.6			

51.2% of the respondents visited Facebook once a day. While less than 10% hardly visited the social media.

About how often do you visit or use Facebook?

			Cumulative Percent		
Valid	Frequency	Percent	Valid Percent	Several times a day	134
26.8	26.8	26.8			
	About once a day	256	51.2	51.2	78.0
	A few times a week	66	13.2	13.2	91.2
	Every few weeks	11	2.2	2.2	93.4
Less often	21	4.2	4.2	97.6	
Never	12	2.4	2.4	100.0	
Total	500	100.0	100.0		

344 respondents (68.8%) of the respondents owned pets.

ARE YOU CURRENTLY A PET OWNER?

				Cumulative Percent	
Valid	Yes	344	68.8	68.8	68.8
	NO	156	31.2	31.2	100.0
	Total	500	100.0	100.0	

Reliability test was conducted using Cronbach's analysis on three variables; confidence measures of banks, tv, and major companies subscales. Findings revealed that alpha level of the subscale to be .58 suggesting adequate level of inter item reliability. Further analysis suggested
that deleting any the items would result to insignificant Cronbach's subscale alpha.

\Rightarrow Reliability

Scale: ALL VARIABLES

Case Processing Summary			
		N	$\%$
Cases	Valid 2	500	100.0
	Excluded $^{\mathrm{a}}$	0	.0
	Total	500	100.0

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics

Item-Total Statistics					
	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Cronbach's Alpha if Item Deleted	
confidencebanks	8.6540	13.153	.673	$-.057^{\text {a }}$	
confidencecompanies	8.2380	13.589	.674	$-.047^{\text {a }}$	
confidencetv	10.2880	33.897	-.028	.906	

2. Test of Difference

Independent sample t-test 1: Statistical difference between means of female and male

 respondents on incomeIndependent sample t-test is one of the statistical procedures to compare the means of two independent groups to determine significance difference between them. This independent sample t -test tested the difference in means of home income between the two distributions. The following variables were used.

Dependent Variable: income

The null hypothesis for this test was that the distribution of income between male and female was significantly different.

T-TEST GROUPS=sex (1 2)
/MISSING=ANALYSIS
/VARIABLES=income
/CRITERIA=CI (.95) .

- T-Test

Group Statistics

	RESPONDENTS SEX	N	Mean	Std. Deviation	Std. Error Mean
FAMILY INCOME IN CONSTANT DOLLARS	FEMALE	MALE	254	55004.83	48180.020

Independent Samples Test

According to the results, there were 254 female and 214 male respondents. The mean income for the female respondents was 55004.83 dollars while the mean income for male participants was 67574.95 dollars which is slightly higher than that for female. The standard deviations were also different. The results according to the p value $>.05$ suggests that there was significant difference in the means. However, further analysis of the sig value for two tailed test suggests that p value $<.05$ which corresponds to the F value suggests that there was no significant difference in the means of the two groups. However, results in the 95% confidence interval of the difference suggests that there are chances that the means could be significantly similar for the two distributions. Therefore, the null hypothesis was acceptable and the test was significant. Therefore, the final conclusion from the results is that sex of the customer does not affect home income.

Independent sample t-test 2: Statistical difference between means of petowner respondents on internethrs

This t test compared the mean difference in the hours spend on the internet between respondents who owned pets and those who did not with the assumption that the mean between the two groups was the same.

Independent variable: petowner

Dependent variable : internet_hrs

T-TEST GROUPS=petowner (1 2)
/MISSING=ANALYSIS
/VARIABLES=internet_hrs
/CRITERIA=CI (.95) .

- T-Test

Independent Samples Test

The results indicate that the mean internet hours of those who did not own a pet was slightly below those who owned a pet by 0.45 . However, the p value was $.83>.05$ which suggested that the variance in the means between the two groups was the same. Further analysis of the sig value with respect to the F statistic also confirms that the test was significant and that there was no significant difference between the means of internet hours for the two groups. The
results therefore, informs that owning or not owning a pet does not affect the hours one spends on the internet per week.

One way ANOVA

Test 1: Difference in means emailhr, HRS2, and USETECH by WEBABLE

One way ANOVA compares the means of dependent variables on groups of independent variable. Therefore, this one way ANOVA tested the difference in means of ability to use technology against percentage of time respondents use technology, email hours, and working hours per week.

IV: webable

DV: USETECH, emailhr, HRS2

```
ONEWAY emailhr HRS2 USETECH BY WEBABLE
```

 /MISSING ANALYSIS.
 - Oneway

The results suggested the test was significant $\mathrm{F}=.180,1.549,1.361$ for emailhrs, HRS2, and USETECH, $\mathrm{p}>.05$. The results suggests that there was no significant difference among the different groups based on their email hours per day, work hours per week, and percentage use of technology according to their ability to use technology. Therefore, one's ability to use technology does not determines their ability to use email, working hours per week, and percentage of time they will use the technology.

Test 2: Difference in mean homo_marry, care_self by political

IV: political

DV: homo_marry and care_self

```
ONEWAY care_self homo_marry BY political
```

 /MISSING ANALYSIS.

- Oneway

		ANOVA				
		Sum of Squares	df	Mean Square	F	Sig.
THOSE IN NEED HAVE TO TAKE CARE OF THEMSELVES	Between Groups	15.236	3	5.079	4.939	. 002
	Within Groups	334.187	325	1.028		
	Total	349.422	328			
HOMOSEXUALS SHOULD HAVE RIGHT TO MARRY	Between Groups	67.986	3	22.662	11.088	. 000
	Within Groups	666.320	326	2.044		
	Total	734.306	329			

The results suggested that the test was not significant $\mathrm{p}<.05$ for both groups. This implies that there was no significant difference in the means of people who advocated for homosexual marriage and attitude on self-care according to their political affiliation. Therefore, political
different opinions regarding self-care and homosexual marriage differ between different people based on their political affiliations.

3. Bivariate Correlations

Correlation 1: relationship between religious, facebook, and nextgen

```
CORRELATIONS
    /VARIABLES=religious facebook nextgen
    /PRINT=TWOTAIL NOSIG
    /MISSING=PAIRWISE.
```


- Correlations

Correlations				
		R CONSIDER SELF A RELIGIOUS PERSON	About how often do you visit or use Facebook?	SCIENCE \& TECH. GIVE MORE OPPORTUNI TIES TO NEXT GENERATIO N
R CONSIDER SELF A RELIGIOUS PERSON	Pearson Correlation	1	-. 054	. 099
	Sig. (2-tailed)		. 226	. 115
	N	497	497	253
About how often do you visit or use Facebook?	Pearson Correlation	-. 054	1	. $130{ }^{*}$
	Sig. (2-tailed)	. 226		. 039
	N	497	500	254
SCIENCE \& TECH. GIVE MORE OPPORTUNITIES TO NEXT GENERATION	Pearson Correlation	. 099	. $130{ }^{*}$	1
	Sig. (2-tailed)	. 115	. 039	
	N	253	254	254

*. Correlation is significant at the 0.05 level (2 -tailed).

The results suggests that there significant negative correlation between those who considered themselves religious and frequency of visiting facebook ($\mathrm{df}=496 \mathrm{r}=-.054, \mathrm{p}>.05$) but
strong positive correlation between religious and belief that technology would open opportunities for future generation ($\mathrm{r}=.099, \mathrm{p}>.05$). There was no significant positive correlation between those who use facebook and the perception that technology will open more opportunity for future generation ($\mathrm{df}=499, \mathrm{r}=.130, \mathrm{p}<.05$). Therefore, facebook use could not determine ability to embrace future technology but religion and attitude towards technology could.

Correlation 2: companies, banks, science_rsch

```
CORRELATIONS
    /VARIABLES=companies banks science_rsch
    /PRINT=TWOTAIL NOSIG
    /MISSING=PAIRWISE.
```

- Correlations

Correlations				
		R CONFIDENC E IN MANOR COMPANIES	CONFID IN BANKS \& FINANCIAL INSTITUTION S	SCIRSCH IS NECESSARY AND SHOULD BE SUPPORTED BY FEDERAL GOVT
R CONFIDENCE IN MANOR COMPANIES	Pearson Correlation	1	. 364 "*	. 027
	Sig. (2-tailed)		. 000	. 670
	N	338	337	244
CONFID IN BANKS \& FINANCIAL INSTITUTIONS	Pearson Correlation	. $3644^{\text {"* }}$	1	$-.146^{*}$
	Sig. (2-tailed)	. 000		. 021
	N	337	342	247
SCI RSCH IS NECESSARY AND SHOULDBE SUPPORTED BY FEDERAL GOVT	Pearson Correlation	. 027	$-.146^{*}$	1
	Sig. (2-tailed)	. 670	. 021	
	N	244	247	249

**. Correlation is significant at the 0.01 level (2 -tailed).
*. Correlation is significant at the 0.05 level (2 -tailed).

The results show no significant correlation between those with confidence in major companies and those with confidence in banks and financial institutions ($\mathrm{df}=337, \mathrm{r}=.00$, $\mathrm{p}<.001$). There is significant positive correlation between confidence in major companies and support for science and technology by the government $(\mathrm{df}=243, \mathrm{r}=.027, \mathrm{p}>.05)$. No significant negative correlation between confidence in banks and support for science and technology from the federal government $(\mathrm{df}=246, \mathrm{r}=-.146, \mathrm{p}<.05)$. The results means that those supporting major companies and banks and financial institutions advocate for support from federal government towards science and technology.

4. Linear Regression

Linear Regression 1: Association bettween USETECH and income, issues, degree

IV: income, issues, degree

DV: USETECH (Only Continous DV variable in the dataset)

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	4439.440	3	1479.813	1.289	. $291{ }^{\text {b }}$
	Residual	45919.759	40	1147.994		
	Total	50359.199	43			

a. Dependent Variable: Percentage of time use tech
b. Predictors: (Constant), UNDERSTAND ISSUES FACING COUNTRY, FAMILY INCOME IN CONSTANT DOLLARS, THE HIGHEST DEGREE R HAVE EARNED

Coefficients ${ }^{\text {a }}$										
Model		Unstandardized Coefficients		Standardized Coefficients Beta	t	Sig.	95.0\% Confidence Interval for B		Collinearity Statistics	
		B	Std. Error				Lower Bound	Upper Bound	Tolerance	VIF
1	(Constant)	90.543	21.903		4.134	. 000	46.274	134.811		
	FAMILY INCOME IN CONSTANT DOLLARS	-1.152E-5	. 000	-. 021	-. 136	. 892	. 000	. 000	. 962	1.040
	THE HIGHEST DEGREE R HAVE EARNED	-. 316	3.931	-. 013	-. 080	. 936	-8.261	7.630	. 940	1.063
	UNDERSTAND ISSUES FACING COUNTRY	-11.516	6.099	-. 291	-1.888	. 066	-23.842	. 810	. 959	1.043

a. Dependent Variable: Percentage of time use tech

Collinearity Diagnostics ${ }^{\text {a }}$							
					Varianc	roportions	
Model	Dimension	Eigenvalue	Condition Index	(Constant)	FAMILY INCOME IN CONSTANT DOLLARS	THE HIGHEST DEGREER HAVE EARNED	UNDERSTAN D ISSUES FACING COUNTRY
1	1	3.556	1.000	. 00	. 02	. 01	. 00
	2	. 261	3.690	. 01	. 96	. 10	. 01
	3	. 152	4.839	. 06	. 02	. 88	. 08
	4	. 031	10.773	. 93	. 00	. 00	. 91

a. Dependent Variable: Percentage of time use tech

Residuals Statistics $^{\mathbf{a}}$					
	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	30.290	78.435	50.034	10.1608	44
Residual	-57.0520	58.2113	.0000	32.6788	44
Std. Predicted Value	-1.943	2.795	.000	1.000	44
Std. Residual	-1.684	1.718	.000	.964	44

a. Dependent Variable: Percentage of time use tech

The results suggested that the three variables had significant potential to increase the percentage of time using technology $\left(\mathrm{R}^{2}=0.88, \mathrm{p}>.05, \mathrm{~F}=1.289\right)$. Each of the independent variable could result to 88% change in the percentage use of technology.

Linear Regression 2: Association between USETECH (only continuous variable for DV) and tvhours, CINTV, careself, age

Model Summary				
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.111^{\mathrm{a}}$.012	.000	31.6924

a. Predictors: (Constant), AGE OF RESPONDENT, Confidence in television, HOURS PER DAY WATCHING TV, THOSE IN NEED HAVE TO TAKE CARE OF THEMSELVES

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	3938.647	4	984.662	. 980	$418^{\text {b }}$
	Residual	317393.065	316	1004.408		
	Total	321331.712	320			

a. Dependent Variable: Percentage of time use tech
b. Predictors: (Constant), AGE OF RESPONDENT, Confidence in television, HOURS PER DAY WATCHING TV, THOSE IN NEED HAVE TO TAKE CARE OF THEMSELVES

Coefficients ${ }^{\text {a }}$						
Unstandardized Coefficients				Standardized Coefficients Beta	t	Sig.
Model		B	Std. Error			
1	(Constant)	53.393	10.238		5.215	. 000
	THOSE IN NEED HAVE TO TAKE CARE OF THEMSELVES	-1.294	1.737	-. 042	-. 745	. 457
	Confidence in television	3.366	2.443	. 077	1.378	. 169
	HOURS PER DAY WATCHING TV	-. 210	. 308	-. 038	-. 682	496
	AGE OF RESPONDENT	-. 094	. 097	-. 054	-. 963	. 336

a. Dependent Variable: Percentage of time use tech

The results suggested that there was significant negative association between the four variables and percentage use of technology ($\mathrm{p}>.05, \mathrm{R}^{2=}=.012, \mathrm{~F}=.980$). However, further analysis of Adjt $\mathrm{R}^{2}=.000$ suggests that there is no significant association.

5. Conclusion

Based on the analysis results of the dataset with 500 respondents, the first t test results suggested that the potential customers in Phoenix market have no variation in their house income according to sex. The second t test suggested that there was no variation in the hours an individual would spend on the internet per week and the ability to own a pet. The first ANOVA test suggested that one's ability to use technology does not determines their ability to use email, working hours per week, and percentage of time they will use the technology. The second ANOVA test suggested that political different opinions regarding self-care and homosexual marriage differ between different people based on their political affiliations. First bivariate correlation showed that Facebook use could not determine ability to embrace future technology but religion and attitude towards technology could while the second revealed that those supporting major companies and banks and financial institutions advocate for support from federal government towards science and technology. The first linear regression analysis revealed that the percentage of time one uses technology can be predicted by their understanding of current issues, home income, and level of higher education. The last regression analysis revealed that attitude towards self-care, confidence in television, age, and hours spend on television.

Therefore, the company should consider source of income, level of education, and ability to use technology while building product lines and shaping their customer service to enhance improved customer relationship in Phoenix market.

Thank you for checking our sample!
Read our blog Help Center

Start Your Order

